вторник, 12 мая 2015 г.

Алгебрична геометрія

Алгебрична геометрія — розділ математики, який об'єднує абстрактну алгебру з геометрією. Головним предметом вивчення класичної алгебричної геометрії, а також в широкому сенсі і сучасної алгебричної геометрії, є множини рішень систем рівнянь, що задаються многочленами.
Алгебрична геометрія зобов'язана своєю появою потребам теорії абелевих інтегралів, в якій були отримані чудові результати, що стосуються алгебричних кривих і мають суто геометричний сенс. Наприклад, використовуючи інтеграли першого роду, К. Шварц довів, що крива, що допускає неперевну групу біраціональних перетворень у себе, біраціонально еквівалентна або прямій або еліптичній кривій. Класичний період алгебричної геометрії відноситься до другої половини XIX століття і представлений, головним чином, італійською школою від Кремони до Енрікеса.
У 30 і 40-их роках XX століття , ідеї побудови алгебричної геометрії на основі комутативної алгебри, інтенсивно розвивалася в той час і відносяться до робітО. Зариського та А. Вейля. Розвиток сучасної алгебричної геометрії багато в чому пов'язаний з роботами французького математика А. Гротендіка, який побудував її мовою схем.

Основні теми математики

Числа[ред. • ред. код]

Вивчення кількості починається з чисел, спочатку із знайомих нам натуральних чисел та цілих чисел та арифметичних операцій з ними, які вивчаються варифметиці. Глибші властивості цілих чисел вивчає теорія чисел, до якої належить знаменита Велика теорема Ферма. До невирішених задач теорії чиселналежать припущення щодо простих чисел-близнюків та Гіпотеза Гольдбаха.
У процесі розвитку числової системи, цілі числа виявились підмножиною раціональних чисел (додались дроби). А ці в свою чергу входять до множинидійсних чисел, які використовуються для відображення неперервних величин. Дійсні числа є окремим випадком від комплексних чисел. А вони є першим кроком в ієрархії чисел, яка включає кватерніони та октоніони. Вивчення натуральних чисел призвело до появи трансфінітних чисел, які формалізують поняття нескінченності. Іншою областю дослідження є розмір множини чисел, який призвів до появи кардинальних чисел, а потім до нової концепції нескінченності: чисел алеф, які дають змогу значимо порівняти розмір нескінченно великих множин.
1, 2, \ldots0, 1, -1, \ldots1, -1, \frac{1}{2}, \frac{2}{3}, 0.12,\ldots
Натуральні числаЦілі числаРаціональні числа
1, -1,\frac{1}{2},0.12,\pi,\sqrt{2},\ldots-1,\frac{1}{2},0.12,\pi,3i+2, e^{i\pi/3},\ldots1,i,j,k, \pi j - \frac{1}{2}k, \dots
Дійсні числаКомплексні числаКватерніони

Перетворення[ред. • ред. код]

36 \div 9 = 4Integral as region under curve.svgVector field.svg\int 1_S\,d\mu=\mu(S)
АрифметикаДиференціальне та інтегральне численняВекторний аналізМатематичний аналіз
\frac{d^2}{dx^2} y = \frac{d}{dx} y + cLimitcycle.svgLorenzAttractor.png
Диференціальні рівнянняДинамічні системиТеорія хаосу
Арифметика — Векторний аналіз — Математичний аналіз — Теорія міри — Диференціальні рівняння — Динамічні системи — Теорія хаосу — Список функцій

Структури[ред. • ред. код]

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}Elliptic curve simple.svgRubik's cube.svgGroup diagdram D6.svgLattice of the divisibility of 60.svg
КомбінаторикаТеорія чиселТеорія групТеорія графівТеорія порядку
Абстрактна алгебра — Теорія груп — Алгебраїчні структури — Алгебраїчна геометрія — Теорія чисел — Топологія — Лінійна алгебра — Універсальна алгебра — Теорія категорій — Теорія послідовностей

Просторові відношення[ред. • ред. код]

Дослідження простору спричинило до виникнення геометрії, зокрема Евклідової геометріїТригонометрія — це розділ математики, що має справу з відношеннями між сторонами та кутами в трикутнику та з тригонометричними функціями; тут простір виражений в числах, до цього розділу входить знаменита Теорема Піфагора. Сучасні дослідження простору узагальнюють ці ідеї та включають багатовимірну геометрію, неевклідові геометрії (які грають центральну роль в загальній теорії відносності) та топологію. Кількісні та просторові характеристики разом досліджуються в аналітичній геометрії,диференціальній геометрії та алгебричній геометріїКонвексна геометрія та дискретна геометрія були розроблені, щоб розв'язати задачі в теорії чисел тафункціональному аналізі, але тепер знайшли своє застосування в оптимізації та інформатиці.
Pythagorean.svgTaylorsine.gifOsculating circle.svgTorus.jpgKoch curve.svg
ГеометріяТригонометріяДиференціальна геометріяТопологіяФрактальна геометрія
Геометрія — Тригонометрія — Алгебрична геометрія — Топологія — Диференціальна геометрія — Диференціальна топологія — Алгебрична топологія — Лінійна алгебра — Фрактальна геометрія

Дискретна математика[ред. • ред. код]

Дискретна математика містить засоби, які застосовуються до об'єктів, що можуть приймати лише специфічні, окремі значення (не неперервні).
Venn A intersect B.svg\forall x (P(x) \Rightarrow P(x'))Fsm moore model door control.gifCaesar3.svg6n-graf.svg
Теорія множинМатематична логікаТеорія обчислюваностіКриптографіяТеорія графів
Комбінаторика — Теорія множин — Математична логіка — Теорія обчислюваності — Криптографія — Теорія графів

Історія математики

Математика виникла з давніх-давен з практичних потреб людини, її зміст і характер з часом змінювались. Від початкового предметного уявлення про ціле додатне число, від уявлення про відрізок прямої, як найкоротшу відстаньміж двома точками. Математика пройшла довгий шлях розвитку, перш ніж стала абстрактною наукою з точно сформованими вихідними поняттями і специфічними методами дослідження. Нові вимоги практики, розширюють обсяг понять математики, наповнюють новим змістом старі поняття.
Поняття математики абстраговані від якісних особливостей специфічних для кожного даного кола явищ і предметів. Ця обставина дуже важлива у застосуванні математики. Так, число 2 не має якогось певного предметного змісту. Воно може відноситися і до двох книг, і до двох верстатів, і до двох ідей. Воно добре застосовується і до цих і до багатьох інших об'єктів. Так само геометричні властивості кулі не змінюються від того, зроблено її зі сталіміді чи скла. Звичайно, абстрагування від властивостей предмету збіднює наші знання про цей предмет і його характерні матеріальні особливості. В той же час саме це абстрагування надає математичним поняттям узагальненості, даючи можливість застосовувати математику до найрізноманітніших за природою явищ. Це означає, що одні й ті жзакономірності математики, один і той же математичний апарат можуть бути достатньо успішно застосовані добіологічнихтехнічнихекономічних та інших процесів.
Розвиток математики опирається на писемність і вміння записувати числа. Напевно, стародавні люди спочатку висловлювали кількість шляхом малювання рисок на землі або видряпували їх на деревині. Стародавні інки, не маючи іншої системи писемності, представляли і зберігали числові дані, використовуючи складну систему мотузяних вузлів, так звані кіпу. Існувало безліч різних систем числення. Перші відомі записи чисел були знайдені в папірусі Рінда, створеному єгиптянами Середнього царстваІндська цивілізація розробила сучасну десяткову систему числення, що включає концепцію нуля.
Абстрагування в математиці не є її винятковою особливістю, оскільки всілякі загальні поняття містять в собі деякий елемент абстрагування від властивостей конкретних речей. Але в математиці цей процес йде далі, ніж у природничих науках. У ній широко використовують процес абстрагування різних ступенів. Наприклад, поняття групи виникло внаслідок абстрагування від деяких властивостей чисел та інших уже абстрактних понять. У математиці специфічним є також метод одержання результатів. Якщо природознавець, доводячи будь-яке твердження, завжди використовує дослід, то математик доводить свої результати лише на основі логічних міркувань. Жодний результат у математиці не можна вважати доведеним, поки йому не дано логічного обґрунтування, хоч спеціальні досліди і підтвердили його. В той же час істинність математичних теорій перевіряється на практиці, але ця перевірка має особливий характер. Висуваються математичні теорії реальних явищ, а висновки з цих теорій перевіряються на досліді.
Однак зв'язки математики з практикою є ширшими, бо поняття математики: теоремизадачі, математичні теорії пов'язані із запитами практики. З часом ці зв'язки стають глибшими і різноманітнішими. Математику можна застосувати до вивчення будь-якого типу руху. Проте в дійсності її роль в різних галузях наукової і практичної діяльності неоднакова. Особливо великою є роль математики у вивченні тих явищ, для яких навіть значне абстрагування від їхніх специфічних якісних характеристик не змінює істотно притаманних цим явищам кількісних і просторових закономірностей. Наприклад, у небесній механіці тіла вважають матеріальними точками (тобто абстрагуються від реальності); обчислені таким способом рухи небесних тіл збігаються з дійсними рухами цих тіл. Користуючись математичним апаратом, можна не тільки дуже точно передобчислювати небесні явища (затемнення, положення планет тощо), але й за відхиленням істинних рухів від обчислених зробити висновок про наявність невидимих неозброєним оком небесних тіл. Саме так було відкрито планети Нептун (1846) і Плутон (1930). У зв'язку з бурхливим розвитком космічних польотів небесна механіка набула все більшого значення. Механіка і фізика стали, по суті, математичними науками. Менше, але все ж значне місце посідає математика в економіцібіології,медицинілінгвістиці. Для цих наук особливого значення набула математична статистика. Якісна своєрідність явищ, що вивчаються, наприклад, у біології, настільки значна, що роль математичного аналізу при дослідженні їх поки що є підпорядкованою. Процес математизації наук, що почався з 18 ст., тепер набув винятково інтенсивного розвитку.
Історію математики вчені зазвичай поділяють на чотири періоди:
період зародження математики як самостійної дисципліни — тривав приблизно до 65 століття до н. е. В цей період формувались поняття цілого числа і раціонального дробу, поняття відстаніплощіоб'єму, створювались правила дій з числами та найпростіші правила для обчислення площ фігур і об'ємів тіл. Математика не мала ще форми дедуктивної науки, вона являла собою збірник правил для виконання певного роду дій. У всіх математичних текстах (єгипетськихвавилонських), що дійшли до нас, математичні знання викладалися саме в такій формі.
З 17 століття розвиток математики істотною мірою взаємокоординується з розвитком фізикимеханіки, низки технічних дисциплін, зокрема гірництва. Математика широко застосовується, наприклад, для складання та опрацювання математичних моделей технологічних процесів.

Що таке "математика"?

Матема́тика (грец. μάθημα — наука, знання, вивчення) — наука, яка первісно виникла як один з напрямків пошуку істини (у грецькій філософії) у сфері просторових відношень (землеміряння — геометрії) і обчислень (арифметики), для практичних потреб людини рахувати, обчислювати, вимірювати, досліджувати форми та рухфізичних тіл. Пізніше розвинулась у досить складну і багатогранну науку про абстрактні кількісні та якісні співвідношення, форми і структури. Загальноприйнятого визначення математики немає. Початково вона використовувалася для підрахунку, вимірювання, а також для вивчення форм і руху фізичних об'єктів шляхомдедуктивних розмірковувань та абстракцій. Математики формулюють нові висновки і намагаються встановити їх справедливість, виходячи зі вдало вибраних аксіом і визначень.